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1. Introduction

In the coming era particle physics experiments will probe ever greater energies so naturally

top quark physics will play an increasingly important rôle in experimental and theoretical

studies. A major area of study at forthcoming collider experiments will be the precision

measurement of the top quark mass, which is one of the fundamental input parameters of

the standard model and gives rise to the leading contributions to its effective potential. In

addition, a thorough understanding of top quark physics is crucial for the discovery of new

heavy particles, most notably the Higgs boson, since, due their copious rate of production,

top quarks will provide the main source of standard model background.
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Although inclusive quantities such as total cross sections are well described by fixed-

order QCD calculations, experimental analyses require a detailed description of the fi-

nal state. Large logarithmic contributions to differential distributions must be resummed

to all orders and hadronization effects taken into account. Parton shower Monte Carlo

simulations include these higher-order corrections by appealing to the strongly ordered

soft/collinear limit in which higher-order matrix elements are represented by universal fac-

tors multiplying the lowest order matrix element. This leading-log approximation scheme

may be recast in a probabilistic form, a Markov chain, from which we can attempt to

generate events as they occur in nature.

In this paper we will describe such a prescription for the simulation top quark decays,

implemented in the new Herwig++ event generator [1, 2]. Many issues raised here and

aspects of the physics we present are also relevant to a discussion of radiation from the top

quark in its production. In full generality it is not possible to study the production and

decay phases separately, doing so corresponds to working in the narrow width approxima-

tion, i.e. neglecting the width of the top quark. In practice this means the width of the

top quark, which is of order 1 GeV, should be considered infinitesimal and so we should

not simulate gluons with energies below that scale. This does not present a problem as

such a scale is already approximately equal to the typical cut-off scale used to terminate

the parton shower (the scale at which the parton shower hands over to the hadronization

model).

Simulations of this process have been considered in the past, in the older FORTRAN

HERWIG program [3, 4]. The simulation which we describe improves on this earlier work

in a number of ways, partially due to general theoretical developments [5, 6]. The older

HERWIG program was based on a non-covariant showering formalism. This meant that,

working in the top quark rest frame, the top quark could emit no radiation before it

decayed. Consequently the entire phase-space had to be populated as though all emissions

originated from the b-quark. In addition, the older program had grown out of a formalism

based on massless emitting partons which forced the introduction of an ad hoc angular

cut-off on gluon emission, giving rise to an unphysical halo of gluons at small angles [7].

In this paper we describe an approach based on a new covariant parton showering

formalism, which naturally includes gluon radiation from the decaying top quark [5]. This

has the advantage that the region of phase space corresponding to soft gluon emission is

populated exclusively by the parton shower, instead of the single gluon emission matrix

element, as in earlier simulations, which required an ad hoc soft cut-off [3, 4]. Another

significant benefit of this new formalism is that it enables a correct treatment of the masses

of the emitting partons through the use of quasi-collinear splitting functions: no angular

cut-off is required.

Finally we note that the standard coherent parton shower algorithm has two important

drawbacks. Firstly, because the parton shower generates emissions from each leg of the hard

scattering (quasi-) independently, each additional emission must be uniquely associated to

a particular leg of the hard scattering, which can only be achieved at the price of having

regions of phase space, corresponding to high pT gluon emissions, which are unpopulated

by the shower. Secondly, the soft/collinear approximation to the QCD matrix elements is
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Figure 1: An example of the decay t → bW + (n) g.

not a good approximation all over the phase-space region populated by the parton shower.

Both of these problems may be solved by so-called matrix element corrections [8] which

ensure that the hardest additional gluon emission in the event is distributed according to

the exact matrix element. We discuss the inclusion of these corrections in the approach

of [5] which leads to significant improvements in predictions of physical observables.

In the next section we present the basic parton shower formalism, based on the co-

variant parton shower formalism described in [5]. As we are using the parton shower

approximation in a range of kinematics and masses that it has not been used in before1 our

discussion is accordingly detailed. The inclusion of the matrix element correction to the

decays is considered in section 3 followed by a discussion of the results of the simulation in

section 4. Finally we present our conclusions and plans for further developments.

2. Basic shower formulation for t→bW decays

Unlike other quarks, the mass and width of the top quark are such that it emits radiation

and decays before hadronization occurs [9, 10]. In this section we describe the parton

shower approximation to the decay of a top quark to a W boson and a b-quark with

additional gluon radiation. Here we are only concerned with the decay of the top quark,

that is our initial state is an on-shell top quark produced in some hard scattering process.

2.1 Shower variables

We use the conventions and shower variables described in [5], which we briefly review here;

these variables, together with an appropriate ordering condition for multiple emissions,

ensure that the emissions obey the angular ordering of QCD radiation.

The decay t → bW + (n) g is depicted in figure 1. The parton showers may be viewed

as cascades of quarks decaying to quark-gluon pairs: qi−1 → qi + ki. The momenta of the

quarks and gluons in the shower are defined in terms of the following Sudakov decomposi-

tion
qi = αip + βin + q⊥i,

ki = qi−1 − qi.
(2.1)

As usual in parton shower simulations, prior to simulating gluon emissions the leading

order decay must be generated. The initial (on-shell) top and bottom quark momenta

1In the earlier work of [3] only the b-quark radiated.

– 3 –



J
H
E
P
0
2
(
2
0
0
7
)
0
6
9

serve to define the basis vectors p needed for each shower. The n and q⊥i basis vectors are

defined in the rest frame of the initial top quark with the initial b-quark momentum in the

z direction. In this frame the n vectors for top and b-quark showers are chosen to be

nt = 1
2mt (1,0, 1) ,

nb = 1
2mt (λ,0,−λ) ,

(2.2)

where λ is given by,

λ =
1

m2
t

√

m4
t + m4

W + m4
b − 2m2

t m
2
b − 2m2

t m
2
W − 2m2

W m2
b . (2.3)

The q⊥i vectors have the form (0,q⊥i, 0) in this frame.

In addition to the Sudakov decomposition (2.1) we also adopt the following variables

from [5] for the top quark shower

q̃2
i =

m2
t−q2

i

1−zi
, zi = αi

αi−1
,

p⊥i = q⊥i − ziq⊥i−1, p2
⊥i = −p2

⊥i,
(2.4)

where p⊥i is defined to be the relative transverse momentum involved in branching i, and

q̃2
i is the evolution variable. For radiation from the bottom quark the definitions in (2.4)

are unchanged except for the evolution variable, which becomes

q̃2
i =

q2
i−1 − m2

b

zi (1 − zi)
. (2.5)

These evolution variables q̃2
i are defined by close analogy to those of the original

HERWIG program [4], they correspond closely to the angle between the emitted quark

and gluon: ordering in q̃2
i results in angular ordering of both the top quark and bottom

quark parton showers. This feature is discussed in more detail in section (2.3).

2.2 Shower phase space

We begin by considering the decay t → bW + (n) g, where the gluons are unresolved. The

partial width for such a decay is given by

∫

dΓn =
1

2mt

∫

dΦbW dΦK (2π)4 δ4 (pt − qb − qW − K) |Mn|2 , (2.6)

where mt is the mass of the top, pt is its four-momentum and qb/W is the four-momentum

of the b/W . We have also denoted the matrix element Mn. K denotes the sum of the

individual gluon momenta
∑n

i=1 ki, while dΦK and dΦbW are the phase-space measures for

the gluon and bW systems respectively,

∫

dΦK =
∏n

i=1

∫

dΦki
=

∏n
i=1

∫

U
d3ki

(2π)32k0
i

,
∫

dΦbW =
∏n

i=b,W

∫ d3qi

(2π)32q0
i

.
(2.7)

The symbol U denotes the region of phase space inside which gluons are unresolvable.
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Assuming the branching picture depicted in figure 1, the full phase space may be

factorised by repeatedly inserting the identity as integrals over two simple delta functions,

one such insertion for each gluon vertex:
∫

dΦbW dΦK =
∏n

i=1

∫

dΦi

∫

dΦbW (2π)4 δ4 (qi − qi+1 − qW )
∫

dΦi =
∫

dΦki
d4qidQ2

i δ
(

Q2
i − q2

i

)

δ4 (qi−1 − qi − ki)
, (2.8)

where q0 = pt, qn = qb. Given the branching picture in figure 1, the parton showers may

be viewed as cascades of two body decays q → qg. This interpretation is evident from the

fact that dΦi has the familiar form of a two body phase-space measure for a quark of mass

Qi and a gluon, albeit with an additional Q2
i integration.

Exploiting the Lorentz invariance of the integration measure, we may rewrite the two

body phase-space integrals for the top quark (2.8) as
∫

dΦi =
1

4 (2π)2

∫

dq̃2
i dzi (1 − zi) , (2.9)

these differ from those of the b-quark by a factor of zi due to slightly different definitions

of the evolution variables (2.4), (2.5).

2.3 Soft gluon coherence and angular ordering

The integration limits on q̃2
i and zi in (2.9) may be inferred from the kinematic constraints

involved in each splitting, however, as we shall now discuss, dynamical, soft gluon interfer-

ence, effects motivate further restrictions on this phase space and hence a modification to

the integration bounds implied by the kinematics.

Using the soft gluon insertion technique [11], and following a similar analysis to that

in [12], the squared amplitude for a soft gluon dressing the decay t → bWg, with amplitude

M1, is given by

lim
k→0

|M2|2 =
2g2

s

ω2











CF

(

W t
tg + W̃ t

gb − W̃ g
tb + W̃ b

gt

)

+ CF

(

W̃ t
gb + W̃ g

tb + 1
2W b

tb + 1
2W b

bg

)

+ CA

(

W g
tg + W̃ g

tb − W̃ t
gb + W̃ b

tg

)











|M1|2 (2.10)

where
W i

ij = 1
2ni.nk

(

1 − n2
i

ni.nk
+

ni.nj−ni.nk

nj .nk

)

,

W̃ i
jk = 1

2

(

W i
ik − W i

ij

)

,
(2.11)

ω is the energy of the soft gluon, ni = pi/Ei, nk = k/ω, and the sum over colours and spins,

is understood. The first two terms proportional to CF are due to (incoherent) radiation

from the top quark and bottom quark respectively, the third term, proportional to CA, is

due to radiation from the hard gluon (g). Averaging W i
ij over the azimuthal angle, about

pi, one readily finds

〈

W i
ij

〉

=
1

2ni.nk









1 − n2
i

ni.nk
+

vi (ni.nj − ni.nk)
√

(ni.nj − ni.nk)
2 − n2

j

(

(1 − ni.nk)
2 − v2

i

)









, (2.12)
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where n2
i = 1− v2

i , with vi the velocity of particle i. Clearly in the limit vi, vj → 1, we see

that the emission from i in a pair of partons ij is restricted to a cone viz

〈

W i
ij

〉

=
1

2ni.nk
θ (θij − θi) , (2.13)

where θi is the angle between the soft gluon and i, and θij is the angle between i and j.

The vanishing of the radiation outside the cone is attributable to destructive interference.

To demonstrate the angular ordering of the radiation from the top quark we need to

consider the limit in which the directions of the top quark and hard gluon approach one

another. We also need to consider vt, vb → 1 in order to use (2.13). In the dipole rest

frame (the rest frame of the W boson) vt is around 0.7, so the validity of working in the

limit vt, vb → 1 is questionable, we will address this matter shortly. Proceeding with these

approximations we find ng = nt and hence

|M2|2 = 2g2
s

ω2

(

CF W t
tg + CAW g

tg + CF W b
t∗b + CF W̃ t∗

t∗b

)

|M1|2

W b
t∗b = 1

2

(

W b
tb + W b

bg

)

W̃ t∗

t∗b = 1
2

(

W t
tb − W t

tg

)

+ 1
2

(

W g
gb − W g

gt

)

. (2.14)

The first two terms in the radiation pattern (2.14) are due to (incoherent) emissions

from the top quark and hard gluon respectively. The third term in the radiation pattern

is due to (incoherent) radiation from the b-quark, due to its interaction with t∗, by which

we mean the amalgamation of t and g (soft gluon emissions from b will not ‘resolve’ the

separation of t and g). In the limit vt, vb → 1, the azimuthal average of each of the first

three terms, of the form W i
ij , is given by (2.13), so soft gluon emissions are restricted to

cones whose half angle is equal to that between the two particles forming the colour dipole

(i and j).

Similarly, by virtue of (2.13), the radiation due to the fourth term in (2.14) is restricted

to a wide cone lying along the t∗ direction, reaching out to the b-quark, but with emissions

vetoed in the smaller cones, where the incoherent t and g emissions are allowed. The

radiation due to the fourth term is considered to be the coherent sum of emissions from t

and g (2.14) and therefore, equivalently, soft, angular ordered, wide angle, radiation from

the internal, off-shell t∗ line. This analysis indicates that in evolving toward the decay,

from the on-shell top quark, the angle of the emissions is always increasing.

We now turn to question the validity of using the vt, vb → 1 limit in motivating this

angular ordering. In [7] it was found that equal finite parton masses in
〈

W i
ij

〉

smooth

the angular cut-off provided by the step function in (2.13) to the form shown in brackets

in (2.12), also the finite masses screen the collinear singularity in the 2ni.n
−1
k prefactor

giving rise to the so-called dead-cone effect [7].

In the case of the t → bW decay, assigning velocities to t and b like those in the

W rest frame, the dead-cone effect is pronounced but the smoothing of the θ (θtb − θt)

cut-off does not occur, as one can see from the plot of
〈

W t
tb

〉

in figure 2. On the other

hand, in the t → bW case, the radiation distribution does not simply vanish outside the

cone like θ (θtb − θt) but rather it can be negative for small θtb. Therefore, by performing

– 6 –
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Figure 2: In this figure we show the azimuthally averaged radiation pattern 〈W t
tb〉, for vt = 0.65,

vb = 1. In this plot, the ratio of the integral of 〈W t
tb〉 outside the cone, to the same integral inside

the cone is around −0.33.

conventional angular ordering, we will be making an approximation i.e. neglecting this

negative contribution. We argue, as in [7], that this is justified given that the majority of

the radiation is inside the cone: for vt ≈ 0.7, vb ≈ 1, as in figure 2, we find that the ratio of

the integral of
〈

W t
tb

〉

outside the cone to the same integral inside the cone is approximately

−0.3.

The same calculation can be performed for the b-quark in the limit vb → 1 and one

finds that the emission angles are required to be successively smaller as one evolves away

from the decay.

In terms of the q̃i evolution variable, in the top quark rest frame, in the soft limit

(1 − z = ε), one may show that

q̃2
t

m2
t

=
2

1 − cos θb
, (2.15)

where θb is the angle between the soft gluon and the b-quark (since the top is at rest)

i.e. starting at q̃2
0 = m2

t and evolving to higher values monotonically increases the an-

gle/transverse momentum of the soft gluon emission with respect to the b-quark direction.

This is consistent with our analysis of the soft radiation pattern from the t → bWg de-

cay (2.14), in the W boson rest frame, which is obtained by a boost in the W boson

direction, which will preserve the transverse momentum ordering. Therefore implementing

angular ordering in the top quark shower simply involves bounding q̃i+1 > q̃i. For the

b-quark the situation is the same as in the older HERWIG program namely q̃i+1 < ziq̃i.

These bounds give rise to nested q̃2
i phase-space integrals. Finally we note that this or-

dering in q̃2
i is more stringent than the q2

i ordering implied by the kinematics, one may

easily prove that the q2
i ordering is a byproduct of the q̃i/angular ordering using just the

definitions in section (2.1).

– 7 –
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2.4 Matrix element approximations

Thus far we have shown how the phase space for the parton shower may be exactly fac-

torized in a Lorentz invariant way. We will now briefly discuss the factorization of the

n-parton matrix element.

The principle requirement for factorization of the matrix element is that the emissions

are either soft or quasi-collinear or both. Such emissions are significantly favoured by the

underlying dynamics and so the majority are of this type. We aim to accurately describe

all quasi-collinear emissions and to take into account soft gluon emissions through the

approximation of angular ordering.

2.4.1 Emissions from top quarks

The quasi-collinear limit [13] is defined to be the limit in which p2
⊥i and the on-shell quark

mass squared
(

m2
q

)

are assumed small compared to n.p but not compared to each other.

For an n-parton process in which a decaying top quark emits a quasi-collinear gluon, the

squared matrix element factorizes according to

lim
qn‖kn

|Mn|2 =
8παS

(1 − zn) q̃2
n

Pqq

(

zn, q̃2
n

)

|Mn−1|2 , (2.16)

Pqq

(

z, q̃2
)

= CF

(

1 + z2

1 − z
− 2zm2

t

(1 − z) q̃2

)

, (2.17)

where Mn−1 is the matrix element for the process without the additional gluon emission.

Pqq is the quasi-collinear quark-gluon splitting function [13].

Another important requirement for our factorization of the matrix element is that

the gluon emissions are such that the intermediate quark virtualities are strongly ordered.

As mentioned previously, the virtualities are naturally ordered by kinematics alone. Fur-

thermore, from the Sudakov decomposition (2.1) and our definitions (2.2), one can show

that imposing angular ordering automatically provides an ordering of virtualities which

is more restrictive than that dictated by the branching picture in figure 1. For strongly

ordered emissions the decomposition (2.16) may be applied recursively, reducing |Mn|2 to

a product of splitting functions that multiply the leading-order matrix element.

Unfortunately, for emissions from the top quark, given our choice of n (2.2), n.p = 1
2m2

t .

Therefore one may not expect that the quasi-collinear splitting function approximates the

single emission matrix element very well. Although the choice of n is arbitrary, in the

top quark rest frame n.p only depends on the energy components of n and, as we shall

see shortly (2.18), the quasi-collinear splitting function is invariant under rescalings of n.

This is may be viewed as a manifestation of the fact that collinear enhancements usually

take the form of large mass singular logarithms of some scale, characteristic of the leading

order process, divided by the quark mass, whereas in this case the characteristic scale is the

quark mass. This is, nevertheless, not a problem; the fact that the collinear emissions are

suppressed means that only soft emissions are enhanced and, as we shall now demonstrate,

these are well modelled by our approximations.

From the definition of the quasi-collinear splitting function and the shower variables

z and q̃2, we find that the approximation to the quasi-collinear limit of |Mn|2 can be

– 8 –
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rewritten

lim
qi‖ki

|Mn|2 = 8παSCFDt,n |Mn−1|2 , (2.18)

Dt,n =
1

2qi−1.ki

(

n.ki

n.qi−1
+

2n.qi

n.ki
− n.qim

2
t

(n.qi−1) (qi−1.ki)

)

. (2.19)

In the soft limit the first term in Dt,n is sub-leading and may be neglected (ki is only in

the numerator), also in the soft limit qi = qi−1, so our approximation to |Mn|2 in the soft

limit is

Dt,n =
n.qt

(qt.ki) (n.ki)
− m2

t

2 (qt.ki)
2 . (2.20)

Neglecting the b-quark mass n ≡ qb and we may recognise this soft limit Dt,n as having

precisely the familiar form of the eikonal dipole radiation function, namely,

Dt,n = −1

2

(

qb

qb.ki
− qt

qt.ki

)2

. (2.21)

Plainly, the quasi-collinear splitting function, together with the definition of n and the

shower variables
(

z, q̃2
)

, reproduces exactly the correct soft limit of |Mn|2 if one neglects

the mass of the b-quark.

Taking into account the b-quark mass, the differences between the soft approximation

we use (2.18) and the exact result (2.21) will become significant if there are emissions for

which qb.ki becomes small i.e. for emissions near-collinear to the b-quark. However such

emissions are generated assuming that they were emitted by the b-quark, i.e. they are

produced by the b-quark shower and not the top quark shower.

The high level of agreement between our approximation (2.18) and the exact soft dis-

tribution (2.21) is understandable given the size of the ratio mb/mt. Despite this nice

feature, the distribution of radiation which is produced is nevertheless based on an approx-

imation, in particular the distribution of high transverse momentum emissions is known

to be modelled poorly. This matter will be rectified later through the soft-matrix element

correction, to be discussed in section 3.

Finally, although, strictly speaking, a higher order effect, earlier studies, neglecting

quark mass effects, have shown that a careful choice of scale for αS enables one to include

parts of the next-to-leading-log contributions [14]. More specifically, for light quarks, the

soft z → 1 limit of the Pqq massless splitting function at the two-loop order may be obtained

by expanding αS

(

p2
⊥i = (1 − z)2 q̃2

)

about q2 to O
(

α2
S

)

and rescaling ΛMS . For massive

partons we assume that the appropriate argument for αS is again (1 − z)2 q̃2, which is

equal to p2
⊥i + (1 − zi)

2 m2
t . Although the argument of αS is no longer the local transverse

momentum and although the quasi-collinear splitting function contains a term not present

in the massless case, in the limit z → 1 both the argument of αS and the quasi-collinear

splitting function tend to their respective values in the massless analysis and so we can

once again expect to reproduce the higher order terms.

– 9 –
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2.4.2 Emissions from b-quarks

Gluon emissions from b-quarks are distributed according to the associated quasi-collinear

splitting function, this is the same as (2.17) but for the replacements zim
2
t → m2

b and

q̃2
i → zq̃2

i . As in the case of emissions from the top quark, we may express this factorization

in terms of scalar products by using the Sudakov decomposition:

lim
qi‖ki

|Mn|2 = 8παSCFDb,n |Mn−1|2 , (2.22)

Db,n =
1

2qi.ki

(

n.ki

n.qi−1
+

2n.qi

n.ki
−

m2
q

qi.ki

)

. (2.23)

This splitting function accurately reproduces the distribution of gluons emitted at small

angles to the quark, however, sizeable errors may occur if the approximation is used beyond

the quasi-collinear limit.

Evidently emissions close to the n direction are enhanced by the second term in (2.23),

proportional to n.k−1
i . This enhancement is unphysical; as well as being a basis vector of

the Sudakov decomposition, n is also the (axial) gauge vector used in the calculation of

the quasi-collinear splitting functions. The manifestation of such divergences indicates a

breakdown of the quasi-collinear approximation, i.e. emissions for which qi−1.k 6À n.ki are

beyond the quasi-collinear limit.

As was shown for the case of the top quark shower, choosing n collinear with the colour

partner gives a good approximation to the eikonal limit and assigns a physical origin to

the n.k−1 divergence. Unfortunately, for the case in hand we cannot choose n collinear

with the top quark since we are in its rest frame and n is light-like. Instead we choose

n acolinear with qb, thereby maximally separating it from the region of phase space into

which the shower can emit gluons. In spite of this, results show a substantial excess of high

transverse momentum emissions from the b-quark, due to the n.k−1
i enhancement. This is

later rectified by the soft matrix element correction procedure described in section 3.1.

Although the soft matrix element correction will compensate any excess emission, we

would prefer that this was not the default modus operandi, since we only implement these

process-specific corrections for cases of special interest. By generalizing the quasi-collinear

splitting function to

Pqq → Vqq = Pqq − CF

(

qi.ki

n.ki

)

n2

n.ki
(2.24)

and setting n = qt, we can also remedy the surplus emissions and generally improve the

shower approximation. This modification produces the correct soft and collinear limits,

it is similar in nature to a soft matrix element correction procedure [8]. Unlike the soft

matrix element correction, the generalized quasi-collinear splitting function Vqq is process

independent. In the most basic sense, our splitting function may be viewed as a simple

merging of the quasi-collinear limit with the full eikonal limit of the colour dipole.2 How-

ever, our generalization is also motivated from more formal considerations viz working with

a more general class of gauges, which we discuss in appendix A.

2In this latter respect Vqq differs from the dipole splitting functions of [15]: reproducing the eikonal limit

of the colour dipole requires a sum of two dipole splitting functions.
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2.5 Sudakov form factor and shower algorithm

Proceeding with strong ordering and quasi-collinear factorization as simplifying assump-

tions, this corresponds to working in the leading-log approximation. It is well known that

large logarithms associated to collinear and soft emissions must vanish when the full phase-

space is integrated over, this is a consequence of the Block-Nordsieck and KLN theorems.

We may use this fact to rewrite the integrals over the phase space for unresolved gluon

emissions U (where we take U to be the region z > zc where zc is some cut-off) in terms of

integrals over the remaining resolved gluon phase-space R, specifically we use,
∫

U
dPi (t → tg) +

∫

R
dPi (t → tg) = 0 (2.25)

where
∫

U/R
dPi (t → tg) =

∫ q̃2
max

q̃2
i−1

dq̃2
i dzi

αS

2πq̃2
i

Pqq

(

zi, q̃
2
i

)

Θ (U/R) , (2.26)

and Θ (U/R) = 1 for gluon emissions in U/R and zero otherwise. This gives the following

expression for the decay width, with n unresolved branchings,

∫

dΓn =
n

∏

i=1

(

−
∫

R
dPi (t → tg)

)

1

2mt

∫

dΦbW (2π)4 δ4 (qt,n − qb − qW ) |M0|2 . (2.27)

Within leading-log accuracy we may neglect the dependence of the final decay, to the b-

quark and W boson, on qt,n. Such approximations are a generic feature of all leading-log

parton shower simulations. With this in mind we may simply rewrite the nested integrals

over the branching probabilities as

∫

dΓn = 1
n!

(

−
∫

R dP1 (t → tg)
)n ∫

dΓ0 . (2.28)

Summing over all n, the corrections due to unresolved gluon emission exponentiate to give,

in the leading-log approximation,

ΓU = exp

(

−
∫

R
dP1 (t → tg)

)∫

dΓ0. (2.29)

Since all soft and collinear logarithmic corrections to the width must vanish on integrating

over the entire phase-space R + U , in the leading log approximation the total width is

simply equal to that given by the leading-order calculation: Γ0. Hence, the probability

that the top quark evolves from scale q̃2
0 to q̃2

max without emitting any resolvable radiation

is,

∆
(

q̃2
0, q̃

2
max

)

=
ΓU
Γ0

= exp

(

−
∫

R
dP1 (t → tg)

)

, (2.30)

the Sudakov form factor. By the same token dPi represents the probability of a branching

t → tg with zi in the interval [zi, zi + dzi] and q̃2
i in

[

q̃2
i , q̃

2
i + dq̃2

i

]

, for resolvable gluons.3

The same calculations hold for the b-quark.

3With this interpretation (2.25) implies that this same probability dPi is negative in the unresolvable

region. Clearly the interpretation of dPi as a probability in this region is not sensible, however the minus

sign is expected, it is known to originate from the virtual gluon emissions (loop contributions), which are

of course unresolvable emissions.
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With these results we find the probability that the top quark evolves from scale q̃2
i to

q̃2
max without emitting any radiation is

S
(

q̃2
i , q̃

2
max

)

=
∆

(

q̃2
0 , q̃

2
max

)

∆
(

q̃2
0, q̃

2
i

) . (2.31)

Therefore the probability that there is some resolvable radiation emitted as the top quark

evolves from scales q̃2
i to q̃2

max is 1 − S
(

q̃2
i , q̃

2
max

)

, which may be written as

−
∫ q̃2

max

q̃2
i

dq̃2 dS
(

q̃2
i , q̃

2
)

dq̃2
=

∫ q̃2
max

q̃2
i

dq̃2dz
αS

2πq̃2
Pqq

(

z, q̃2
)

S
(

q̃2
i , q̃

2
)

Θ (R) . (2.32)

The integrand of (2.32) is the probability density that the next resolvable branching after

q̃2
i occurs at scale q̃2.

The probability distribution (2.32) is sampled using the veto algorithm as described

in [6]. Finally we note that, the gluons produced by the top quark and bottom quark

will in turn produce their own parton showers; these showers are standard time-like gluon

showers, not subject to any complications, e.g. initial-state evolution or parton masses,

as is the case for the top quark shower, the details of such gluon showering are described

in [5].

2.6 Phase-space limits - boundary conditions

We will now discuss the integration limits for the Sudakov form factor starting with z.

The boundaries on the z variable depend on the q̃2. For a given q̃2 the z boundaries are

determined by the requirement that p2
⊥ > 0. In the case of the top quark the requirement

that the intermediate top quark has a mass greater than (mb + mW )2 provides a further

constraint on z. The implementation of these complicated z bounds is straightforward

using the veto algorithm [6].

The lower bound on q̃2 for both top and bottom quarks is simply q̃2 = m2
q due to the

fact that the top quark is initially on-shell and the final b-quark must also be on-shell. The

phase-space boundaries in the q̃2 variable were calculated in [5]. It was shown in [5], that

for a given q̃b,max there is an upper bound q̃t,max, for emissions from the top quark,

(

q̃2
t,max − m2

t

)

(

q̃2
b,max − m2

b

)

= 1
4

(

m2
t − m2

W + m2
b + λ

)2
, (2.33)

that partitions the phase-space for the decay t → bW + g into three regions which do not

overlap: one region accessible to gluon emissions from the bottom quark, one accessible to

emissions from the top quark, and a further inaccessible dead region.

This partitioning is vital to ensure that each phase space point has a unique matrix

element approximation assigned to it and to avoid double counting of phase-space points.

As such the three regions do not overlap, this is particularly significant for the soft gluon

region of phase space, which is most heavily populated. The price to be paid for this par-

titioning is the presence of the dead region, however this region is solely comprised of high

p⊥ gluons, so it is sparsely populated, and in any case the parton-shower approximation

is known to model such emissions badly.
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Figure 3: In this figure we show the phase space boundaries for the symmetric (left) and maximal

(right) choices of phase space partitioning, in the xg, xW plane, where xg and xW are equal to two

times the energy fraction of the gluon and W boson in the top quark rest frame. The regions T1 and

T2 are populated by gluon emissions from the top quark while the region labelled B is populated

by emissions from the b-quark. The region labelled D is the dead region. For the symmetric choice

the phase space volume is divided more or less evenly between that accessible to emissions from

the top and bottom quarks, while the maximal choice maximises the volume to be populated by

emissions from the b-quark.

Given the relation (2.33), between q̃2
t,max and q̃2

b,max, we define two choices of phase-

space partition, the so-called symmetric choice,

q̃2
b,max = m2

b + 1
2

(

m2
t − m2

W + m2
b + λ

)

(2.34)

and maximal choice

q̃2
b,max = 4

(

(mt − mW )2 − m2
b

)

. (2.35)

In the case of the symmetric choice, the phase-space volume is divided more or less evenly

between that accessible to emissions from the top and bottom quarks, while the maxi-

mal choice maximises the volume to be populated by emissions from the b-quark. The

two choices of phase-space partitioning can be seen in figure 3. Typically we favour the

symmetric choice, as the maximal choice involves generating high transverse momentum

emissions from the b-quark.

2.7 Kinematics reconstruction

Given the boundary conditions and the emission probability distribution (2.32) we have

all we need to generate parton showers in terms of q̃2
i , zi and φi. The Sudakov variable

αi may be calculated from (2.4) as each zi is generated, the transverse momentum is also

calculated at this point. The calculation of the βi variables is more complicated.

For time-like, final-state, showers we start at the end of the shower, since the particles

are on-shell there we can simply determine the value of βi by computing q2
i from (2.1)

and setting q2
i = m2

q , where m2
q is the on-shell mass squared. Once this is done the parent

particle’s virtuality, and hence its βi value, follows directly from momentum conservation.
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Applying momentum conservation to each vertex in such showers, one can fully reconstruct

all of the momenta up to and including that of the shower progenitor particle.

Recall that the gluons radiated by the top quark will produce their own time-like

showers. The first step in reconstructing the momenta of the top quark as it evolves

toward its decay, is to reconstruct these showers, i.e. we first reconstruct the momenta

of the gluons that were radiated by the top quark by applying the procedure outlined

above. The momentum of the top quark after each gluon emission can then be calculated

by momentum conservation, as the initial top quark momentum is known (mt,0, 0). In

this way we completely determine the momenta of the top quark and all of the radiation

emitted prior to the t → bW decay. Should the b-quark also emit radiation, the resulting

jet(s) will be reconstructed in the standard way for time-like showers [6].

Since the initial b and W boson momenta were generated according to the tree level

t → bW decay they add up to (mt,0, 0), rather than the actual momentum of the top

quark prior to its decay. Furthermore, if the b-quark radiates, forming a b-jet4 the jet

reconstruction described above leads to the initial b-quark momentum having a virtuality

greater than its mass.
In order to ensure global momentum conservation we perform a ‘momentum reshuffling’

which smoothly preserves the internal properties of each jet. Let us denote the total
momentum of the jets radiated by the top quark gISR. The first step in the momentum
reshuffling involves rescaling the three-momenta of the W boson to account for the loss of
energy due to gluon emissions from the top quark. The second step involves absorbing the
component of gISR transverse to the W, in the b-jet. Finally the momentum of the b-jet
in the direction of the original b-quark is rescaled. This process is sketched in figure 4 and
is described by the following mapping:

qW =
(

√

m2
W + p2,−p

)

→
(

√

m2
W + k2

2p
2,−k2p

)

,

qbJET
=

(√

m2
bJET

+ p2
bJET

,pbJET

)

→
(√

m2
bJET

+ k2
1p

2 + p2
ISR⊥

, k1p− pISR⊥

)

,
(2.36)

where p is the initial W boson momentum from the t → bW process, k1 and k2 are constant

rescalings of the b-jet and W boson momenta. The three vectors pISR‖ and pISR⊥ are

the components of gISR parallel and perpendicular to p. Applying energy-momentum

conservation to the momenta above allows one to determine the value of the rescalings

k1 and k2. The top quark and the radiation from it are untouched by the momentum

reshuffling.

In practice, rather than applying the rescalings and momentum subtractions as indi-

cated in (2.36), once k1 and k2 are determined we actually calculate the Lorentz boosts

which perform a mapping that is exactly equivalent to that in (2.36). By calculating the

mapping in terms of these Lorentz boosts, we can conserve momentum and preserve the

internal structure of the jets by applying the boosts to each particle in the b-quark jet.

If the top quark does not radiate any gluons before decaying, the three-momenta of

the b-jet and W boson system are rescaled such that its invariant mass is equal to the

top mass. In this special case the problem of momentum reshuffling is identical to that of

4In the present discussion we will assume the b-quark has given rise to a jet since this is the general

case, the extension to the case where it does not radiate is trivial.
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Figure 4: In this figure we sketch the ‘momentum reshuffling’ procedure. Initially the top quark

decay to a b-quark and a W boson is simulated, this momentum configuration is shown first on the

far left. Afterwards some additional radiation is produced from the parton shower, represented by

the spiral in the central configuration above, clearly this configuration does not conserve momentum.

The initial b-jet momenta are rescaled and boosted to give the configuration shown on the right

hand side: the three-momenta of the W boson and b-jet are scaled down and the momentum of

the additional radiation, transverse to the W -boson direction, is absorbed by the b-jet .

e+e− → qq̄ events, hence for these cases we use exactly the same momentum reshuffling as

described in [6].

This sequence of boosts and rescalings is designed such that, at least for the case of one

gluon emission, the 3-body decay kinematics of [5] are reproduced, i.e. should the gluon

be emitted by the top quark, or the b-quark, its transverse momentum is absorbed by the

b-quark, in the top quark rest frame (as depicted in figure 4).

3. Matrix element corrections

As stated in section 2, the effects of unresolvable gluon emissions have been included to all

orders through the Sudakov form factor. The master formula and shower algorithms gen-

erate further resolvable emissions by approximating the full t → bW +(n) g matrix element

by a product of quasi-collinear splitting functions multiplying the tree level amplitude.

Ideally, we wish to include the higher-order effects in the master equation as accurately as

possible.

3.1 Soft matrix element corrections

In the parton shower approximation the probability density that the ith resolvable gluon

is emitted into
[

q̃2, q̃2 + dq̃2
]

, [z, z + dz] is

dP
(

z, q̃2
)

=
dq̃2

q̃2
dz

αS (pT )

2π
Pqq

(

z, q̃2
)

Θ (R) . (3.1)
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This approximation works well for the case that the emission lies within the domain of the

quasi-collinear limit. On the other hand the exact matrix element calculation gives us that

the probability of a resolved emission is (at least in the leading log approximation)
∫

R
dPm.e. =

∫

dq̃2dz
1

Γ0

d2Γ

dzdq̃2
Θ (R) , (3.2)

where Γ is the width of the process t → bWg. The differential width for t → bWg is given

in appendix B.2. Once again the ‘probability’ of an unresolved emission can therefore be

written −
∫

R dPm.e, proceeding in the same way as our earlier derivations (2.32), we then

have the probability density that the ith resolvable gluon is emitted into
[

q̃2, q̃2 + dq̃2
]

,

[z, z + dz] is given by the integrand of

∫ q̃2
max

q̃2
i−1

dq̃2
i dz

1

Γ0

d2Γ

dzdq̃2
i

exp

(

−
∫ q̃2

i

q̃2
i−1

dq̃2dz
1

Γ0

d2Γ

dzdq̃2

)

. (3.3)

We may generate the distribution in (3.3) by simply augmenting the veto algorithm that is

used to produce (2.32) with a single additional rejection weight, simply vetoing emissions

if a random number RS is such that

RS ≥ dP

dP

m.e.∣
∣

∣

∣

z,q̃2

. (3.4)

For this to work we require that the parton shower emission probability dP always over-

estimates that of the exact matrix element dPm.e., if necessary this can be achieved by

simply enhancing the emission probability of the parton shower with a constant factor.

In practice we do not apply this correction to all emissions as most should be well

approximated by the parton shower. The emissions which are not expected to be modelled

well are neither soft nor collinear, they have large transverse momentum (p⊥). In practice

we make the ansatz that all emissions which do not have the largest p⊥ of any generated

thus far, are considered to be infinitely soft and we only correct the set which is comprised

of those emissions which have the largest p⊥ so far, to the full matrix element distribution.

One might be concerned that in this case it is really only proper to apply this correction

to the final, largest p⊥emission, however, in the context of our coherent parton branching

formalism (angular ordering) the earlier wide angle emission is considered too soft to resolve

the subsequent, larger p⊥ splitting, and is therefore effectively distributed assuming that

the latter emission did not occur. Under these assumptions the correct procedure should

be to correct only those emissions which are the hardest so far, from distribution (3.1) to

distribution (3.3) by applying veto in (3.4) [8].

3.2 Hard matrix element corrections

In addition to correcting the distribution of radiation inside the T1, T2 and B regions

populated by the parton shower, we also wish to correct the distribution of radiation

outside, in the high p⊥ dead region. We wish to distribute the radiation in the dead region

according to the full t → bWg matrix element i.e. according to

1

Γ0

d2Γ

dxgdxW
=

αSCF

π

(

f
(

b, w, q̃2, z
)

λ (1 + w − b − xW )x2
g

)

, (3.5)
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where b = m2
b/m

2
t , w = m2

W /m2
t and λ is given by (2.3). The full expression for the width

is lengthy and so we give it in appendix B.2.

The first step in the algorithm is to generate a point inside the dead region. This is

non-trivial as the phase-space boundaries shown in figure 3 are rather complicated functions

of the mass of the b-quark, W -boson, z and q̃2. It turns out that the phase-space may be

parametrized as functions xW

(

xg, q̃
2
)

, that is, the Dalitz variable xW = 2qW .pt/m
2
t may

be written as a function of xg = 2qg.pt/m
2
t and the evolution variable q̃2(to do this one

eliminates z in favour of xg). These functions were calculated using the conventions in [5]

and are noted in appendix B.1.

The phase-space point is selected by importance sampling the differential distribu-

tion (2.10) assuming a x−α
g (1 + w − xW )−1 behaviour, where α is a parameter which may

be tuned to improve the sampling efficiency. First we rewrite the integral over the dead

region (D) as,
1
Γ0

∫

D dxgdxW
d2Γ

dxgdxW
= 1

Γ0

∫

D dygdyW W (xg, xW ) ,

W (xg, xW ) = xα
g (1 + w − xW ) d2Γ

dxgdxW
,

yg = 1
1−αx1−α

g ,

yW = ln (1 + w − xW ) ,

(3.6)

and generate yg, yW points assuming they are uniformly distributed between their maxi-

mum and minimum values in the dead region. Then we keep events with probability

P =
W(xg,xW )V(yg)

Γ0
, (3.7)

(P ≤ 1) where

V (yg) = (yg,max − yg,min) (yW,max − yW,min)|yg
, (3.8)

is the Monte Carlo estimate of the volume of the dead region in yg, yW plane: yg,max and

yg,min are the maximum and minimum possible values for yg in the dead region, while

yW,max and yW,min are the maximum and minimum possible values of yW in the dead

region, for the generated value of yg.

Once a pair of values yg, yW has been successfully generated, they may be mapped

back to the corresponding xg, xW phase-space point and the momenta of the top quark,

bottom quark and W boson can be constructed from there.

4. Results

In figure 5 we show the Dalitz distributions for the process t → bWg as given by the

parton shower algorithm, including matrix element corrections. Only decays where one

gluon is emitted are considered, since to do otherwise would constitute a different (higher

dimensional) phase-space volume to that shown.

The Dalitz plots show significant clustering of events in the soft xg →0 region as

expected. One can also see a marked clustering of events along the line xW ≈ 1.2 where

the energy fraction of the W boson is maximal i.e. where the gluon is emitted collinear

with the b-quark. Again, this is to be expected since we know that collinear emissions
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Figure 5: Dalitz plot for gluonic radiation in top decay. In both plots the soft and hard matrix

element corrections have been applied, but only one emission has been allowed. a) shows the

radiation for the symmetric choice of [5] for emission from the top and bottom while b) shows the

radiation with the scales chosen to give the maximum amount of radiation from the bottom quark.

The blue (innermost) line gives the limit for radiation from the bottom, the green (middle) line

from the top and the red (outer) line the boundary of the phase space region.

from the b-quark are enhanced by logarithms of m2
b/m

2
t . We do not see a similar wedge-

like clustering of events at low transverse momentum with respect to the top quark. Such

events would lie along the lower section of the red boundary between xg ≈ 0 and xg ≈ 0.75.

Clustering along this line would only come from collinear enhancements of the form log Q2

m2
t

where Q2 is some hard scale, but in this case Q2 = m2
t so there is no such enhancement,

only soft enhancements log
m2

t

m2
g

giving rise to the observed clustering as xg → 0.

In addition to considering the isolated decay process we have also considered the process

e+e− → tt̄ near threshold:
√

s = 360 GeV. By working close to the tt̄ threshold we inhibit

the effects of radiation from the production phase of the tt̄ pair, thus highlighting the

effects of radiation in the tt̄ decays. In analysing these events we have worked at the parton

level and only considered leptonic W decays. We have clustered all final-state quarks and

gluons into three jets using the k⊥ clustering algorithm [16], taking care to omit the W

decay products from the clustering. Events for which the minimum jet separation is less

than ∆R = 0.7
(

∆R2 = ∆η2 + ∆φ2
)

, as well as events containing a jet with transverse

energy less than 10 GeV, are excluded from the analysis. For these events we have plotted

the distributions of the jet separation ∆R and the logarithm of the jet measure y3, where

y3 =
2

s
minij

(

min
(

E2
i , E2

j

)

(1 − cos θij)
)

(4.1)

is the value of the jet resolution parameter for which the three jet event would be seen

as a two jet event. This analysis is the same as that performed in two earlier related

works [3, 17].

In figure 6 we show differential distributions with respect to the jet separation of the

closest pair of jets in the event (∆R), for the cases of the symmetric and maximal phase

space partitions (2.34), (2.35). Figure 6 shows that the matrix element corrections have
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Figure 6: 1
σ

dσ
d∆R

where ∆R2 = ∆η2 + ∆φ2 for three jet e+e− → tt̄ events at
√

s = 360GeVwith

and without matrix element corrections. On the left we show the distributions obtained for the case

that the phase-space volume populated by the parton showers from the top and bottom quarks is

almost the same size (the symmetric phase space partition (2.34)), while on the right we show the

distributions obtained for the case that the shower from the b-quark populates most of the phase

space choice (the maximal phase space partition (2.35)). In each plot the black line corresponds

to the parton shower approximation, the red line corresponds to the parton shower including hard

and soft matrix element corrections, while the green/blue lines respectively correspond to including

only the hard/soft part of the matrix element corrections. The magenta line is obtained using the

standalone parton shower but with Pqq replaced by the generalized quasi-collinear splitting function

Vqq (2.24).

significant consequences for the ∆R distributions. We see that when the soft matrix element

correction is applied, the distribution is more peaked for small ∆R and tails off more quickly

than the distributions obtained without it. This is to be expected, it is a softening of the

distribution, it is indicative of the fact that the soft matrix element correction is vetoing

a number of high pT emissions, not well modelled by the standalone parton shower: such

hard emissions naturally give rise to more widely separated jets (larger ∆R).

The degree to which the soft matrix element correction affects the ∆R distribution

suggests that the standalone parton shower does not model the number of these high pT

emissions well: similar distributions were observed in version 5.9 of the older HERWIG

program and were since considered to be the result of a bug (showering in the wrong

reference frame). In our case the effect shown is understood to be a genuine artefact of

the covariant parton shower formalism and may be traced back to the form of the quasi-

collinear splitting function for b-quark emissions. In section 2.4 we noted that, as the

angle between the reference vector (n) and the emitted gluon (k) decreases, emissions will

be enhanced in the n direction (particularly soft emissions). This spurious enhancement

results from choosing n not equal to precisely the momentum of the colour partner of

the b-quark. This also explains why the differences between the results with and without

matrix element corrections are more pronounced for the maximal phase space partition than

the symmetric partition. On the contrary our results including the soft matrix element

corrections compare well with those obtained in the earlier FORTRAN HERWIG program.
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Figure 7: 1
σ

dσ
d log(y3)

where y3 = 2
s

minij

(

min
(

E2
i , E2

j

)

(1 − cos θij)
)

for three jet e+e− → tt̄ events

at
√

s = 360GeVwith and without matrix element corrections. As in figure 6, on the left we show

the distributions obtained for the symmetric phase space partition (2.34), while on the right we

show the distributions obtained for the maximal phase space partition (2.35). The histograms are

coloured in the same way as for figure 6.

In section 2.4 we also proposed a new generalized quasi-collinear splitting function Vqq

(see also appendix A), which improves on the usual quasi-collinear splitting function by

reducing to the eikonal dipole function in the soft limit. From a practical point of view the

introduction of this splitting function is akin to a soft matrix element correction. The ∆R

distributions support this assertion; the standalone parton shower is greatly improved by

the use of this new splitting function.

As with figure 6, in figure 7 we show differential distributions with respect to the jet

measure y3, for the cases of the symmetric and maximal phase space partitions, for all

possible combinations of matrix element corrections. We also show the same distribution

obtained using the generalized quasi-collinear splitting function in the basic parton shower.

When the soft matrix element correction is applied, the distribution shifts toward smaller

y3 values since some high pT emissions will be vetoed by it. Conversely the hard matrix

element correction supplies more events with high pT emissions and so the distribution

shifts toward higher y3 values, since these events will not require such fine resolution to

distinguish three jets from two jets. As with the ∆R distributions, the introduction of the

generalized quasi-collinear splitting functions, Vqq, gives a substantial improvement of the

basic parton shower, softening the jet structure.

In figures 8 and 9 we see the effects of varying the choice of phase space partitioning,

as well as the gluon mass parameter, on the ∆R and y3 distributions. The distributions are

less sensitive to changes in this parameter when the matrix element corrections are applied,

compared to the case of the standalone parton shower. This is to be expected given that

the quasi-collinear splitting functions (Pqq) are known to produce an excess of emissions as

one approaches the acolinear direction. This explains the variation of the distributions on

shifting the phase space boundary, moreover the majority of these spurious emissions will

be soft, resulting in a heightened sensitivity to the gluon mass parameter.
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Figure 8: Here we show the 1
σ

dσ
d∆R

distribution as in figure 6. On the left we show the distribution

obtained from the parton shower approximation and on the right we show the same distribution

including all matrix element corrections. In each case we have shown how doubling the gluon mass

and/or varying the choice of phase space partition affects the result.

Figure 9: Here we show the 1
σ

dσ
d log(y3)

distribution as in figure 7. On the left we show the

distribution obtained from the parton shower approximation and on the right we show the same

distribution including all matrix element corrections. In each case we have shown how doubling the

gluon mass and/or varying the choice of phase space partition affects the result.

5. Conclusions

At the beginning of this paper we presented a theoretical framework for the simulation of

QCD radiation emitted in top quark decays. In section 2 we described the basic parton

shower formulation. Although this formalism is the product of almost thirty years of

evolution, it has not previously been applied to the extremes of kinematics and mass scales

found in top decay. In doing so we find that the latest covariant parton shower formalism

of [5] works well under these conditions and we have gained new insight regarding its use.

In particular, we introduced a generalization of the quasi-collinear limit [13, 15] for which

the q → qg splitting function correctly reproduces the eikonal limit.

In section 3 we have described the soft matrix element correction which fixes the
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distribution of the hardest emission to be that of the leading-order matrix element for the

decay t → bWg, in a manner respecting colour coherence. We also describe the hard matrix-

element correction which simply populates the dead region of phase space (not populated

by the parton shower) according to the same single gluon emission matrix element.

The results of our program show good agreement with those of the FORTRAN HERWIG

program for the ∆R and y3 observables, provided that either the soft matrix element

correction is applied [3], or our proposed generalization of the q → qg quasi-collinear

splitting function is used (2.24). The associated Dalitz plots obtained for isolated t → bWg

decays also meet with our expectations. Distributions obtained using the standalone parton

shower with the conventional quasi-collinear splitting functions, suffer from an excess of

high pT emissions from the b-quark. This excess in the original basic shower formulation

is well understood to arise from the choice of reference vector (n) required for the b-quark

shower. Future versions of the Herwig++ program will use the new splitting function by

default.

The simulation we have presented improves on that of the older HERWIG program in

a number of ways through the use of the new covariant parton shower formalism. The new

formalism brings with it the use of the quasi-collinear Altarelli-Parisi splitting functions,

which lead to a natural screening of collinear singularities, allowing us to dispense with the

ad hoc angular cut-off, which was responsible for the spurious dead-cone halo. Moreover,

in this paper we propose a generalization of these splitting functions, leading to further im-

provements in the modelling of soft radiation. We have also been able to generate radiation

from the top quark in its rest frame, thereby populating infrared regions, corresponding to

soft gluon emissions from the top quark, with the parton shower. Previously such regions

were populated according to a single emission matrix element correction with an arbitrary

soft cut-off [3].

It is clear from our discussion that this work may be readily extended to decays of other

heavy particles, in particular squarks and gluinos. Should supersymmetry be realised in

nature, squark and gluino decays will give rise to a significant amount of activity in the

LHC experiments, which we will need to simulate. Moreover, as with the top quark today,

measuring the masses of these particles will be a major area of study, requiring accurate

simulations of their decays. It is our intention to make this extension in a future version

of the Herwig++ program.
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A. Generalizing the q → qg quasi-collinear splitting function

The quasi-collinear limit is that in which q⊥ becomes O (mq) and small [15]. This region

can be identified by the uniform rescalings q⊥ → λq⊥, mq → λmq and examining the limit

λ → 0. In the case of a quasi-collinear gluon emission from a quark, in an arbitrary n
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particle process, the squared matrix element factorizes as

lim
qi‖ki

|Mn|2 =
8παS

q2
i−1 − m2

q

Pqq |Mn−1|2 , (A.1)

Pqq = CF

(

1 + z2

1 − z
−

m2
q

qi.ki

)

, (A.2)

where z = n.qi/n.qi−1.

Note that, as well defining the Sudakov decomposition, the reference vector n also

specifies a choice of axial gauge. Restricting the form of n imposes restrictions on the

choice of axial gauge. To make calculations easier, n is typically chosen to be lightlike and

perpendicular to k⊥, as in [13]. The resulting splitting kernel (A.2) is invariant under gauge

transformations respecting these constraints
(

n2 = n.k⊥ = 0
)

i.e. Lorentz boosts of n, in the

n direction. Invariance under more general Lorentz transformations requires k⊥ = 0; in this

sense k⊥ may be regarded as a measure of the gauge dependence of approximation (A.1).

Parton shower simulations use approximation (A.1) beyond the collinear limit, so

strictly speaking the approach is not gauge invariant. This is not a problem provided

that gauge dependent contributions are sub-leading. However, in the case of the b-quark

shower we have noted an excess of emissions at the edge of the shower phase space, due

to an unphysical singularity, proportional to n.k−1
i , where n is collinear with the W bo-

son. Furthermore, as discussed in section 2.4, in the limit of soft emissions the splitting

kernel (A.1) does not reduce to the correct eikonal dipole radiation function.

What we require is that the splitting kernel reproduces the correct collinear and (ide-

ally) soft limits of the matrix element, without introducing any other singular terms. Since

the behaviour of matrix elements in these limits is universal, any splitting kernel satisfying

these criteria will be, at least to leading order, gauge invariant.

It turns out that all of these problems can be solved by simply relaxing the restrictions

on the gauge vector. It is well known that the eikonal limit of a colour dipole can be

calculated by considering gluon emission from just one quark, provided that the gauge

vector is equal to the momentum of the colour partner. In order to reproduce the correct

soft behaviour we should therefore always set the gauge vector equal to the four-momentum

of the colour partner of the emitter. Although one can often obtain a good approximation

to the eikonal limit by choosing n to be lightlike and collinear to the colour partner, if the

colour partner is heavy, as in top decay, this approximation fails.

In any case, this prompts us to consider the case that n is massive. If we do this we

find that the steps leading to (A.1) now give, up to sub-leading terms,

Pqq → Vqq = CF

(

1 + z2

1 − z
−

m2
q

qi.ki
− n2

n.ki

(

qi.ki

n.ki

)

)

, (A.3)

with z defined as z = n.qi/n.qi−1. The additional term in the generalized quasi-collinear

splitting function (Vqq) directly arises from the n2 term in the gluon polarization sum.

The new splitting function Vqq (A.3) reproduces the correct soft and collinear limits in the

shower phase space, it contains no unphysical divergent terms.
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From a purely pragmatic point of view Vqq can be considered as a kind of global soft

matrix element correction and it is seen to have similar effects on physical observables (see

section 4). Crucially, unlike the soft matrix element corrections, the generalized quasi-

collinear splitting function is process-independent.

B. t→bWg phase-space and matrix element

In this appendix we give the matrix element for t → bWg decay and the phase-space

parametrization, these are necessary for the hard matrix element correction discussed in

section 3. Both the phase-space and matrix element are parametrized in terms of the Dalitz

variables

xi =
2qi.pt

m2
t

, (B.1)

which, in the top quark rest frame, are equal to two times the fraction of the top quark’s

energy carried by particle i. We also define the following ratios of masses for convenience:

b =
m2

b

m2
t

, w =
m2

W

m2
t

. (B.2)

B.1 Phase space

The Dalitz variables xi, were calculated in [5], in terms of z and the top quark evolution

variable κ̃t = q̃2/m2
t , assuming the gluon was emitted by the top quark, as being

xW (z, κ̃t) =
1+w−b−(1−z)κ̃t−

√
(1+w−b−(1−z)κ̃t)

2−4w(1−(1−z)(κ̃t−1))z
2z

+
1+w−b−(1−z)κ̃t+

√
(1+w−b−(1−z)κ̃t)

2−4w(1−(1−z)(κ̃t−1))z
2(1−(1−z)(κ̃t−1))

xg (z, κ̃t) = (1 − z) κ̃t,

, (B.3)

where b = m2
b/m

2
t and w = m2

W /m2
t . We may completely eliminate z from xW to give

xW (xg, κ̃t) = 1
2(κ̃t−xg) (κ̃t (1 + w − b − xg) − Λ (xg, κ̃t))

+ 1
2(κ̃t+xg(1−κ̃t))

(κ̃t (1 + w − b − xg) + Λ (xg, κ̃t)) ,

Λ (xg, κ̃t) =
√

(

xg − x̂g+

) (

xg − x̂g−

)

(κ̃t − κ̃+) (κ̃t − κ̃−),

x̂g± = 1 −
(√

w ±
√

b
)2

,

κ̃± = 2xg

(

xg ±
√

(

1 − 1
w

) (

xg − x̄g+

) (

xg − x̄g−

)

)−1

,

x̄g± =
(1−w)(1±

√
w)−b(1∓

√
w)

1−w .

(B.4)

The expression for xW given in (B.4) enables one to draw lines of constant κ̃t in the xW ,

xg plane.

Repeating the procedure for the case that the gluon is assumed to originate from the

b-quark gives

xg± (xW , κ̃b) = 2 − xW − z± (xW , κ̃b)
√

x2
W − 4w

−1
2

(

1 + b
1+w−xW

)(

2 − xW −
√

x2
W − 4w

)

,

z± (xW , κ̃b) = 1
2κ̃b

(

κ̃b ±
√

κ̃2
b − 4κ̃b (1 + w − b − xW )

)

.

(B.5)
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Inverting (B.5) to obtain xW as a function of xg involves a high-order polynomial requiring

a numerical solution, neglecting the b-quark mass an analytic solution becomes possible.

B.2 Matrix element

The matrix element for the decay t → bWg was given in [3, 5] assuming a massless b-quark.

We calculate the squared matrix element, without neglecting the b-quark mass and find

1
Γ0

d2Γ
dxgdxW

= αSCF

π
1

λx̄W x2
g

(

− bx2
g

x̄W
+ (1 − w + b) xg − x̄W (1 − xg) − x2

g

+
xg

1+w−2w2−b(2−w−b)

(

1
2 (1 + 2w + b) (x̄W − xg)

2 + 2wx̄W xg

))

x̄W = 1 + w − b − xW

, (B.6)

where again, b = m2
b/m

2
t and w = m2

W /m2
t . Setting b = 0 , our expression (B.6) easily

reduces to those given in [3, 5].
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next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189

[hep-ph/0201036].

[16] J.M. Butterworth, J.P. Couchman, B.E. Cox and B.M. Waugh, KTJET: a C++

implementation of the Kt clustering algorithm, Comput. Phys. Commun. 153 (2003) 85

[hep-ph/0210022].

[17] L.H. Orr, T. Stelzer and W.J. Stirling, Gluon radiation in tt̄ production and decay at the

LHC, Phys. Rev. D 56 (1997) 446 [hep-ph/9609246].

– 26 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB173%2C429
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB627%2C189
http://arxiv.org/abs/hep-ph/0201036
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C153%2C85
http://arxiv.org/abs/hep-ph/0210022
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD56%2C446
http://arxiv.org/abs/hep-ph/9609246

